The Escherichia coli BglF protein, an enzyme II of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system, has several enzymatic activities. In the absence of beta-glucosides, it phosphorylates BglG, a positive regulator of bgl operon transcription, thus inactivating BglG. In the presence of beta-glucosides, it activates BglG by dephosphorylating it and, at the same time, transports beta-glucosides into the cell and phosphorylates them. BglF is composed of two hydrophilic domains, IIAbgl and IIBbgl, and a membrane-bound domain, IICbgl, which are covalently linked in the order IIBCAbgl. Cys-24 in the IIBbgl domain is essential for all the phosphorylation and dephosphorylation activities of BglF. We have investigated the domain requirement of the different functions carried out by BglF. To this end, we cloned the individual BglF domains, as well as the domain pairs IIBCbgl and IICAbgl, and tested which domains and which combinations are required for the catalysis of the different functions, both in vitro and in vivo. We show here that the IIB and IIC domains, linked to each other (IIBCbgl), are required for the sugar-driven reactions, i. e., sugar phosphotransfer and BglG activation by dephosphorylation. In contrast, phosphorylated IIBbgl alone can catalyze BglG inactivation by phosphorylation. Thus, the sugar-induced and noninduced functions have different structural requirements. Our results suggest that catalysis of the sugar-induced functions depends on specific interactions between IIBbgl and IICbgl which occur upon the interaction of BglF with the sugar.
The Escherichia coli BglG protein antiterminates transcription at two terminator sites within the bgl operon in response to the presence of beta-glucosides in the growth medium. BglG was previously shown to be an RNA-binding protein that recognizes a specific sequence located just upstream of each of the terminators and partially overlapping with them. We show here that BglG also binds to the E. coli RNA polymerase, both in vivo and in vitro. By using several techniques, we identified the beta' subunit of RNA polymerase as the target for BglG binding. The region that contains the binding site for BglG was mapped to the N-terminal region of beta'. The beta' subunit, produced in excess, prevented BglG activity as a transcriptional antiterminator. Possible roles of the interaction between BglG and the polymerase beta' subunit are discussed.
The Escherichia coli transcriptional antiterminator protein BglG inhibits transcription termination of the bgl operon in response to the presence of beta-glucosides in the growth medium. BglG is an RNA-binding protein that recognizes a specific sequence partially overlapping the two terminators within the bgl transcript. The activity of BglG is determined by its dimeric state which is modulated by reversible phosphorylation. Thus, only the nonphosphorylated dimer binds to the RNA target site and allows readthrough of transcription. Genetic systems which test dimerization and antitermination in vivo were used to map and delimit the region which mediates BglG dimerization. We show that the last 104 residues of BglG are required for dimerization. Any attempt to shorten this region from the ends or to introduce internal deletions abolished the dimerization capacity of this region. A putative leucine zipper motif is located at the N terminus of this region. The role of the canonical leucines in dimerization was demonstrated by their substitution. Our results also suggest that the carboxy-terminal 70 residues, which follow the leucine zipper, contain another dimerization domain which does not resemble any known dimerization motif. Each of these two regions is necessary but not sufficient for dimerization. The BglG phosphorylation site, His208, resides at the junction of the two putative dimerization domains. Possible mechanisms by which the phosphorylation of BglG controls its dimerization and thus its activity are discussed.